Statistical analysis of epileptic activities based on histogram and wavelet-spectral entropy
نویسندگان
چکیده
Epilepsy is a chronic neurological disorder which is identified by successive unexpected seizures. Electroencephalogram (EEG) is the electrical signal of brain which contains valuable information about its normal or epileptic activity. In this work EEG and its frequency sub-bands have been analysed to detect epileptic seizures. A discrete wavelet transform (DWT) has been applied to decompose the EEG into its sub-bands. Applying histogram and Spectral entropy approaches to the EEG sub-bands, normal and abnormal states of brain can be distinguished with more than 99% probability.
منابع مشابه
Wavelet Spectral Entropy for Indication of Epileptic Seizure in Extracranial EEG
Xiaoli Li Dept. of Automation and Computer-Aided Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong ([email protected]) (Dec. 11, 2002) Abstract: This paper employs wavelet spectral entropy and scale averaged wavelet power to indicate the epileptic seizures in extracranial EEG. However, we found wavelet spectral entropy and scale averaged power are the more efficiency by compar...
متن کاملA Quantitative Analysis of an EEG Epileptic Record Based on MultiresolutionWavelet Coefficients
The characterization of the dynamics associated with electroencephalogram (EEG) signal combining an orthogonal discrete wavelet transform analysis with quantifiers originated from information theory is reviewed. In addition, an extension of this methodology based on multiresolution quantities, called wavelet leaders, is presented. In particular, the temporal evolution of Shannon entropy and the...
متن کاملSpectral Entropy Employment in Speech Enhancement based on Wavelet Packet
In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non st...
متن کاملUsing PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes
A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...
متن کاملFault diagnosis of gearboxes using LSSVM and WPT
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011